Published
- 2 min read
Question: Compute the mean and standard deviation of the random variable with the given discrete probability…
Compute the mean and standard deviation of the random variable with the given discrete probability distribution.
\[ \begin{array}{c|c} x & P(x) \\ \hline -6 & 0.17 \\ -2 & 0.07 \\ 2 & 0.24 \\ 4 & 0.28 \\ 6 & 0.24 \\ \end{array} \]
Send data to Excel
Part 1 of 2
(a) Find the mean. Round the answer to three decimal places, if necessary.
The mean is
Part 2 of 2
(b) Find the standard deviation. Round the answer to three decimal places, if necessary.
The standard deviation is
Solution
To compute the mean and standard deviation of the random variable with the given discrete probability distribution, follow these steps: Given: \[ \begin{array}{c|c} x & P(x) \\ \hline -6 & 0.17 \\ -2 & 0.07 \\ 0 & 0.24 \\ 4 & 0.28 \\ 6 & 0.24 \\ \end{array} \] (a) Find the mean. Calculate the mean (\(\mu\)) using the formula: \[ \mu = \sum (x \cdot P(x)) \] \[ \mu = (-6 \cdot 0.17) + (-2 \cdot 0.07) + (0 \cdot 0.24) + (4 \cdot 0.28) + (6 \cdot 0.24) \] \[ \mu = -1.02 - 0.14 + 0 + 1.12 + 1.44 \] \[ \mu = 1.40 \] The mean is 1.40. (b) Find the standard deviation. First, calculate the variance (\(\sigma^2\)) using the formula: \[ \sigma^2 = \sum ((x - \mu)^2 \cdot P(x)) \] Calculate each component: \[ (x - \mu)^2 \cdot P(x) = ((-6 - 1.40)^2 \cdot 0.17), ((-2 - 1.40)^2 \cdot 0.07), ((0 - 1.40)^2 \cdot 0.24), ((4 - 1.40)^2 \cdot 0.28), ((6 - 1.40)^2 \cdot 0.24) \] \[ = (56.56 \cdot 0.17), (11.56 \cdot 0.07), (1.96 \cdot 0.24), (6.76 \cdot 0.28), (21.16 \cdot 0.24) \] \[ = 9.6252, 0.8092, 0.4704, 1.8928, 5.0784 \] \[ \sigma^2 = 9.6252 + 0.8092 + 0.4704 + 1.8928 + 5.0784 \] \[ \sigma^2 = 17.876 \] Then, calculate the standard deviation (\(\sigma\)): \[ \sigma = \sqrt{\sigma^2} = \sqrt{17.876} \] \[ \sigma \approx 4.230 \] The standard deviation is 4.230.