App Icon
AI Math Solver+
Algebra & Geometry Helper
Open in app
Home

Published

- 2 min read

img of Compute the mean and standard deviation of the random...

Question: Compute the mean and standard deviation of the random variable with the given discrete probability…

Compute the mean and standard deviation of the random variable with the given discrete probability distribution.

\[ \begin{array}{c|c} x & P(x) \\ \hline -6 & 0.17 \\ -2 & 0.07 \\ 2 & 0.24 \\ 4 & 0.28 \\ 6 & 0.24 \\ \end{array} \]

Send data to Excel

Part 1 of 2

(a) Find the mean. Round the answer to three decimal places, if necessary.

The mean is

Part 2 of 2

(b) Find the standard deviation. Round the answer to three decimal places, if necessary.

The standard deviation is

Solution

To compute the mean and standard deviation of the random variable with the given discrete probability distribution, follow these steps: Given: \[ \begin{array}{c|c} x & P(x) \\ \hline -6 & 0.17 \\ -2 & 0.07 \\ 0 & 0.24 \\ 4 & 0.28 \\ 6 & 0.24 \\ \end{array} \] (a) Find the mean. Calculate the mean (\(\mu\)) using the formula: \[ \mu = \sum (x \cdot P(x)) \] \[ \mu = (-6 \cdot 0.17) + (-2 \cdot 0.07) + (0 \cdot 0.24) + (4 \cdot 0.28) + (6 \cdot 0.24) \] \[ \mu = -1.02 - 0.14 + 0 + 1.12 + 1.44 \] \[ \mu = 1.40 \] The mean is 1.40. (b) Find the standard deviation. First, calculate the variance (\(\sigma^2\)) using the formula: \[ \sigma^2 = \sum ((x - \mu)^2 \cdot P(x)) \] Calculate each component: \[ (x - \mu)^2 \cdot P(x) = ((-6 - 1.40)^2 \cdot 0.17), ((-2 - 1.40)^2 \cdot 0.07), ((0 - 1.40)^2 \cdot 0.24), ((4 - 1.40)^2 \cdot 0.28), ((6 - 1.40)^2 \cdot 0.24) \] \[ = (56.56 \cdot 0.17), (11.56 \cdot 0.07), (1.96 \cdot 0.24), (6.76 \cdot 0.28), (21.16 \cdot 0.24) \] \[ = 9.6252, 0.8092, 0.4704, 1.8928, 5.0784 \] \[ \sigma^2 = 9.6252 + 0.8092 + 0.4704 + 1.8928 + 5.0784 \] \[ \sigma^2 = 17.876 \] Then, calculate the standard deviation (\(\sigma\)): \[ \sigma = \sqrt{\sigma^2} = \sqrt{17.876} \] \[ \sigma \approx 4.230 \] The standard deviation is 4.230.

Scan to download AI Math Solver+ app

QR code to download the app

or

AppStore Icon