Published
- 1 min read
Question: (\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} dx\)…
\(\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} dx\)
Solution
To solve the integral
\[ \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} \, dx \]
we can use the substitution method.
Let \( u = 1 + \sin x \).
Then, \( du = \cos x \, dx \).
When \( x = 0 \), \( u = 1 + \sin 0 = 1 \).
When \( x = \frac{\pi}{2} \), \( u = 1 + \sin \frac{\pi}{2} = 2 \).
The integral becomes
\[ \int_1^{2} \frac{1}{u} \, du \]
Integrating \( \frac{1}{u} \), we get
\[ \ln |u| \]
Thus, the integral evaluates to
\[ \left[ \ln |u| \right]_1^2 \]
Substituting the limits:
\[ \ln |2| - \ln |1| = \ln 2 - 0 = \ln 2 \]
Therefore, the value of the integral is \( \ln 2 \).