Published
- 1 min read
Question: (\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} dx\)…
\(\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} dx\)
Solution
To solve the integral
\[ \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} \, dx \]
we’ll use a substitution method.
Let
\[ u = 1 + \sin x \]
Then,
\[ du = \cos x \, dx \]
Substituting in the limits:
When \( x = 0 \), \( u = 1 + \sin 0 = 1 \).
When \( x = \frac{\pi}{2} \), \( u = 1 + \sin \frac{\pi}{2} = 2 \).
Now the integral becomes:
\[ \int_1^2 \frac{1}{u} \, du \]
The antiderivative of \(\frac{1}{u}\) is
\[ \ln |u| \]
So, we have:
\[ \int_1^2 \frac{1}{u} \, du = \ln |u| \Big|_1^2 \]
Evaluating this, we get:
\[ \ln |2| - \ln |1| = \ln 2 - \ln 1 = \ln 2 \]
Therefore, the value of the integral is
\[ \ln 2 \]