Published
- 1 min read
Question: RATIONAL NUMBERS REVIEW ASSIGNMENT 5. Add, subtract, multiply, or divide the following fractions…
RATIONAL NUMBERS REVIEW ASSIGNMENT
- Add, subtract, multiply, or divide the following fractions and mixed numbers. Then reduce each one to lowest terms.
a) $8\frac{5}{6} + 3\frac{2}{7}$
$8\frac{5}{6} = \frac{53}{6}$
$3\frac{2}{7} = \frac{23}{7}$
Common denominator = 42
$\frac{53}{6} = \frac{371}{42}$
$\frac{23}{7} = \frac{138}{42}$
$\frac{371}{42} + \frac{138}{42} = \frac{509}{42}$
b) $-\frac{3}{8} - \left(-\frac{5}{24}\right)$
$-\frac{3}{8} - \left(-\frac{5}{24}\right)$
$-\frac{3}{8} + \frac{5}{24}$
Common denominator = 24
$-\frac{3}{8} = -\frac{9}{24}$
$-\frac{9}{24} + \frac{5}{24} = -\frac{4}{24} = -\frac{1}{6}$
c) $8\frac{7}{8} \times 9\frac{2}{5}$
$8\frac{7}{8} = \frac{71}{8}$
$9\frac{2}{5} = \frac{47}{5}$
$\frac{71}{8} \times \frac{47}{5} = \frac{3337}{40}$
$= 83\frac{17}{40}$
d) $-\frac{2}{11} + \left(-2\frac{4}{5}\right)$
$-\frac{2}{11} + \left(-2\frac{4}{5}\right)$
$-\frac{2}{11} + \left(-\frac{14}{5}\right)$
$-\frac{2}{11} \times \frac{15}{15} = \frac{10}{165} = \frac{5}{77}$
e) $4.8 \div \frac{33}{4}$
Solution
To solve problem e) \(4.8 + \frac{33}{4}\): Convert \(4.8\) to a fraction: \[ 4.8 = \frac{48}{10} = \frac{24}{5} \] Find a common denominator for \(\frac{24}{5}\) and \(\frac{33}{4}\), which is 20: \[ \frac{24}{5} = \frac{96}{20} \] \[ \frac{33}{4} = \frac{165}{20} \] Add the two fractions: \[ \frac{96}{20} + \frac{165}{20} = \frac{261}{20} \] Convert \(\frac{261}{20}\) to a mixed number: \[ \frac{261}{20} = 13 \frac{1}{20} \] Final Answer: \(13 \frac{1}{20}\)