Published
- 2 min read
Question: RATIONAL NUMBERS REVIEW ASSIGNMENT 5. Add, subtract, multiply, or divide the following fractions…
RATIONAL NUMBERS REVIEW ASSIGNMENT
- Add, subtract, multiply, or divide the following fractions and mixed numbers. Then reduce each one to lowest terms.
a) \(8\frac{5}{6} + 3\frac{2}{7}\)
\[ 8\frac{5}{6} = \frac{53}{6} \]
\[ 3\frac{2}{7} = \frac{23}{7} \]
\[ \frac{53}{6} + \frac{23}{7} = \frac{371}{42} + \frac{138}{42} = \frac{509}{42} \]
\[ \text{Common denominator} = 42 \]
\[ \frac{53}{6} + \frac{23}{7} = \frac{371}{42} + \frac{138}{42} = \frac{509}{42} \]
b) \(-\frac{3}{8} - \left(-\frac{5}{24}\right)\)
\[ -\frac{3}{8} - \left(-\frac{5}{24}\right) = -\frac{3}{8} + \frac{5}{24} \]
\[ \text{Common denominator} = 24 \]
\[ -\frac{3}{8} = -\frac{9}{24} \]
\[ -\frac{9}{24} + \frac{5}{24} = -\frac{4}{24} = -\frac{1}{6} \]
c) \(8\frac{7}{8} \times 9\frac{2}{5}\)
\[ 8\frac{7}{8} = \frac{71}{8} \]
\[ 9\frac{2}{5} = \frac{47}{5} \]
\[ \frac{71}{8} \times \frac{47}{5} = \frac{3337}{40} \]
d) \(-\frac{2}{11} + \left(-2\frac{4}{5}\right)\)
\[ -\frac{2}{11} + \left(-2\frac{4}{5}\right) = -\frac{2}{11} + \left(-\frac{14}{5}\right) \]
\[ -\frac{2}{11} \times \frac{14}{5} = \frac{10}{154} = \frac{5}{77} \]
e) \(4.8 + \frac{33}{4}\)
Solution
Here are the solutions for each part of the problem shown in the image: a) \(\frac{8}{5} + \frac{3}{2}\) Convert mixed numbers to improper fractions. \[ 8 \frac{5}{6} = \frac{53}{6} \quad \text{and} \quad 3 \frac{2}{7} = \frac{23}{7} \] Find a common denominator, which is 42. \[ \frac{371}{42} + \frac{138}{42} = \frac{509}{42} \] b) \(-\frac{3}{8} - \left( -\frac{5}{24} \right)\) Remove the parentheses. \[ -\frac{3}{8} + \frac{5}{24} \] Find a common denominator, which is 24. \[ -\frac{9}{24} + \frac{5}{24} = -\frac{4}{24} = -\frac{1}{6} \] c) \(8 \frac{7}{8} \times 9 \frac{2}{5}\) Convert mixed numbers to improper fractions. \[ 8 \frac{7}{8} = \frac{71}{8} \quad \text{and} \quad 9 \frac{2}{5} = \frac{47}{5} \] Multiply the fractions. \[ \frac{71}{8} \times \frac{47}{5} = \frac{3337}{40} \] Convert the result back to a mixed number: \[ 3337 \div 40 = 83 \quad \text{remainder} \, 17 \quad \Rightarrow \quad 83 \frac{17}{40} \] d) \(-\frac{2}{11} + \left( -\frac{2}{4\frac{5}{5}} \right)\) The fractions are: \[ -\frac{2}{11} \quad \text{and} \quad -\frac{15}{44} \] Find the equivalent multiplication fraction. \[ -\frac{2}{11} \times \frac{15}{11} = -\frac{10}{154} = -\frac{5}{77} \] e) \(4.8 \div \frac{33}{4}\) Convert \(4.8\) to a fraction. \[ 4.8 = \frac{24}{5} \] Divide by \(\frac{33}{4}\). \[ \frac{24}{5} \times \frac{4}{33} = \frac{96}{165} \] Simplify the fraction. \[ = \frac{32}{55} \] These are the steps and answers to each problem.