App Icon
AI Math Solver+
Algebra & Geometry Helper
Open in app
Home

Published

- 1 min read

img of Simplify so that no negative exponents appear in the final...

Question: Simplify so that no negative exponents appear in the final result. Assume all variables represent…

Simplify so that no negative exponents appear in the final result. Assume all variables represent nonzero numbers.

(2pq2)2(3p5q5)1 \left( \frac{2p}{q^2} \right)^2 \left( \frac{3p^5}{q^{-5}} \right)^{-1}

(2pq2)2(3p5q5)1=xxxx \left( \frac{2p}{q^2} \right)^2 \left( \frac{3p^5}{q^{-5}} \right)^{-1} = \boxed{\phantom{xxxx}}

Solution

Simplify the given expression step by step. Start with the expression: (2pq2)2(3p5q5)1 \left( \frac{2p}{q^2} \right)^2 \left( \frac{3p^5}{q-5} \right)^{-1} Simplify each part separately. Begin with (2pq2)2\left( \frac{2p}{q^2} \right)^2: (2pq2)2=(2p)2(q2)2=4p2q4 \left( \frac{2p}{q^2} \right)^2 = \frac{(2p)^2}{(q^2)^2} = \frac{4p^2}{q^4} Next, simplify (3p5q5)1\left( \frac{3p^5}{q-5} \right)^{-1} by taking the reciprocal: (3p5q5)1=q53p5 \left( \frac{3p^5}{q-5} \right)^{-1} = \frac{q-5}{3p^5} Combine the two results: 4p2q4×q53p5=4p2(q5)3p5q4 \frac{4p^2}{q^4} \times \frac{q-5}{3p^5} = \frac{4p^2(q-5)}{3p^5q^4} Simplify the expression by canceling out common terms: =4(q5)3p3q4 = \frac{4(q-5)}{3p^3q^4} The simplified expression is: 4(q5)3p3q4 \frac{4(q-5)}{3p^3q^4}

Scan to download AI Math Solver+ app

QR code to download the app

or

AppStore Icon