Published
- 1 min read
Question: Identifying functions from relations Relation 1 - Domain: \( k \) - Range: \( -2, 9, 2,…
Identifying functions from relations
Relation 1
- Domain: \( k \)
- Range: \( -2, 9, 2, -6, 7 \)
Relation 2
- Domain: \( t \)
- Range: \( v, t, d \)
Relation 3
- Domain: \( x, y, r \)
- Range: lake
Relation 4
- Domain: \( -2, 9, 1, 9, -7 \)
- Range: \( -9, -7, 8, 8, -5 \)
Function
- Not a function
Solution
To determine if a relation is a function, each element in the domain must map to exactly one element in the range. Relation 1: - Domain: \( k, y, l, e \) - Range: Each domain element maps to one unique range element. - Conclusion: It \textbf{is a function}. Relation 2: - Domain: \( l \) - Range: \( l \) maps to multiple range elements. - Conclusion: It is \textbf{not a function}. Relation 3: - Domain: \( x, y, z \) - Range: Each domain element maps to the same range element “lake” but still only one unique output. - Conclusion: It \textbf{is a function}. Relation 4: - Domain: \( -2, 9 \) - Range: \( 9 \) maps to multiple range elements. - Conclusion: It is \textbf{not a function}.