Published
- 2 min read
Question: Consider the following polynomial function. \[ f(x) = x^4 + x^3 - 11x^2 - 5x + 30 \] Step 4 of…
Consider the following polynomial function.
\[ f(x) = x^4 + x^3 - 11x^2 - 5x + 30 \]
Step 4 of 4: Find the zero(s) at which \( f \) “flattens out”. Express the zero(s) as ordered pair(s).
Answer
Select the number of zero(s) at which \( f \) “flattens out”.
Selecting an option will display any text boxes needed to complete your answer.
- none
- 1
- 2
- 3
- 4
Solution
To find the zero(s) at which \( f(x) \) “flattens out,” we need to determine the points where the function \( f(x) \) equals zero and its derivative \( f’(x) \) also equals zero. \[ f(x) = x^4 + x^3 - 11x^2 - 5x + 30 \] \[ f’(x) = 4x^3 + 3x^2 - 22x - 5 \] First, let’s factorize \( f(x) \): \[ f(x) = (x - 2)(x + 3)(x^2 - 5) \] This gives us the roots: \[ x = 2, \quad x = -3, \quad x = \sqrt{5}, \quad x = -\sqrt{5} \] Next, we check if any of these roots satisfy \( f’(x) = 0 \): \[ f’(2) = 4(2)^3 + 3(2)^2 - 22(2) - 5 = 32 + 12 - 44 - 5 = -5 \neq 0 \] \[ f’(-3) = 4(-3)^3 + 3(-3)^2 - 22(-3) - 5 = -108 + 27 + 66 - 5 = -20 \neq 0 \] \[ f’(\sqrt{5}) = 4(\sqrt{5})^3 + 3(\sqrt{5})^2 - 22(\sqrt{5}) - 5 \approx -2\sqrt{5} + 10 \neq 0 \] \[ f’(-\sqrt{5}) = 4(-\sqrt{5})^3 + 3(-\sqrt{5})^2 - 22(-\sqrt{5}) - 5 \approx 2\sqrt{5} + 10 \neq 0 \] None of the roots satisfy \( f’(x) = 0 \). Final Answer: There are no zero(s) at which \( f(x) \) “flattens out.”