Published
- 1 min read
Question: Add. Simplify, if possible. \frac{1}{v+4} + \frac{4}{5v} + \frac{4}{v^2 + 4v} The sum is ____…
Add. Simplify, if possible.
\frac{1}{v+4} + \frac{4}{5v} + \frac{4}{v^2 + 4v}
The sum is ____. (Simplify your answer.)
Solution
Let’s simplify the expression step by step.
Find a common denominator.
\[ \text{LCM} = 5v(v + 4) & \]
Rewrite each fraction with the common denominator.
\[ \frac{1}{v+4} = \frac{5v}{5v(v + 4)} & \]
\[ \frac{4}{5v} = \frac{4(v + 4)}{5v(v + 4)} & \]
\[ \frac{4}{v^2 + 4v} = \frac{4}{v(v + 4)} = \frac{20}{5v(v + 4)} & \]
Add the fractions.
\[ \frac{5v + 4(v + 4) + 20}{5v(v + 4)} & \]
Simplify the numerator.
\[ 5v + 4v + 16 + 20 = 9v + 36 & \]
Factor the numerator.
\[ 9(v + 4) & \]
Cancel out the common terms.
\[ \frac{9(v + 4)}{5v(v + 4)} = \frac{9}{5v} & \]
The sum is \(\frac{9}{5v}\).