Published
- 1 min read
Question: (\[ (11x^2 - 4x + 13) - (3x^2 + 6x - 5) \]\)…
\(\[ (11x^2 - 4x + 13) - (3x^2 + 6x - 5) \]\)
Solution
To solve the algebraic expression, follow these steps: First, expand the expression: \[ (11x^2 - 4x + 13) - (3x^2 + 6x - 5) \] Distribute the negative sign across the second set of parentheses: \[ 11x^2 - 4x + 13 - 3x^2 - 6x + 5 \] Combine like terms: Combine the \(x^2\) terms: \[ 11x^2 - 3x^2 = 8x^2 \] Combine the \(x\) terms: \[ -4x - 6x = -10x \] Combine the constant terms: \[ 13 + 5 = 18 \] So the simplified expression is: \[ 8x^2 - 10x + 18 \]